

FORMULAS

Formulas - Electrical

Amps x Ohms	VOLTS = $\frac{Watts}{Amps} \qquad \sqrt{Watts \times Ohms}$				
Volts Ohms					
$WATTS = Volts \ x \ Amps \qquad Amps^2 \ x \ Ohms \qquad \frac{Volts^2}{Ohms}$					
Volts	OHMS = Volts ² Watts				

Power Factor =
$$\frac{KW}{KVA}$$
 = Cos Θ

Single Phase

Three Phase

$$KW = \frac{\sqrt{x \ A \ x \ PF}}{1000}$$

$$KVA = \frac{V \ x \ A}{1000}$$

$$AMPS = \frac{KVA \ x \ 1000}{V}$$

$$\frac{\sqrt{3} \ x \ V \ x \ A}{1000}$$

$$\frac{\sqrt{3} \ x \ V \ x \ A}{1000}$$

$$\frac{KVA \ x \ 1000}{\sqrt{3} \ x \ V}$$

Approx. Motor KVA = Motor Horsepower (At Full Load)

Capacitors Connected In Parallel C₁ + C₂ + C₃ = C Total

Capacitors Connected In Series

$$\frac{C_1 \times C_2}{C_1 + C_2} = C \text{ Total}$$

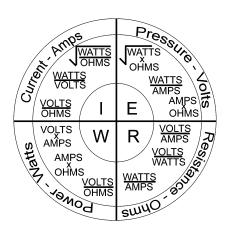
More Than Two
$$\frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}} = C \text{ Total}$$

VOLTAGE UNBALANCE

% Voltage Unbalance =

100 x Max. Voltage Deviation From Average Voltage
Average Voltage

BOOST TRANS.:


Rating Plate F.L.A. x Rating Plate VOLTS = KVA

$$\frac{\textit{Rating Plate VOLTS}}{\textit{Rating Plate VOLTS}} = \textit{FACTOR}$$

$$\frac{KVA}{FACTOR}$$
 = Trans. KVA Rating

$$\left(\frac{V_2}{V}\right)$$
2 x Heater Rating = Rating @ New Voltage

 V_1 Rated Volts V_2 = Measured Volts

This chart shows four ways to figure each value: Amps (I), Volts (E), Ohms (R) or Watts (W).

Example: A 4800 Watt electric heat element is connected to a 240 Volt circuit. How many Amps does it draw?

Solution: Locate Amps section of chart: $\frac{\text{Watts (W)}}{\text{Volts (E)}} = \text{Amps (I)}$

Thus 4800 ÷ 240 = 20 Amps. Carried further, what is the resistance?

$$\frac{\text{Volts}^2 E^2}{\text{Watts (W)}} = \text{Ohms (R) } 240 \times 240 \div 4800 = 12 \text{ Ohms.}$$

Conversion Table For Watts - Amperes - Volts

<u> </u>						
VA / ()	Voltage (C - Single Phase)					
Watts	120	208	240	277		
		Amperes				
500	4.2	2.4	2.1	1.8		
1000	8.3	4.8	4.2	3.8		
1500	12.5	7.2	6.3	5.4		
2000	16.7	9.6	8.3	7.2		
2500	20.9	12.0	10.4	9.0		
3000	25.0	14.4	12.5	10.6		
3500	29.2	16.8	14.5	12.6		