

HYDRONIC FORMULAS

COMPUTING FLOW FROM BTU/h			
Simplified formula	GPM = BTU/h ÷ (∆t x 500)		
Example: Determine the flow of 286,000 BTU/h at a 20°F differential temperature.	GPM = 286,000 ÷ (20 x 500) GPM = 286,000 ÷ 10,000 GPM = 28.6		

CALCULATING ACTIVE LOOP LENGTH		
Note: The leader length must be added	Room ft ² x 1.0 = active loop at 12" o.c.	
to the active loop length in order to obtain	Room ft ² x 1.2 = active loop at 10" o.c.	
the total loop length.	Room ft ² x 1.33 = active loop at 9" o.c.	
	Room ft ² x 1.5 = active loop at 8" o.c.	
	Room ft ² x 1.7 = active loop at 7" o.c.	
	Room ft ² x 2.0 = active loop at 6" o.c.	

AMOUNT OF JOIST TRAK[™] PANELS (A5080375, A5080500) Active loop length x 0.2125

AMOUNT OF QUIK TRAK[™] PANELS (A5060701) AND RETURNS (A5060702)

Room ft² x 0.386 (panels)

Room ft² x 0.386 (panels)

AMOUNT OF PEX CLIPS (F7060375, F7051258, F7057500, F7051001)

Active Loop Length ÷ 3

FLOOR SURFACE TEMPERATURE

(BTU/h/ ft² ÷ 2.0) + Room setpoint

SUPPLY FLUID TEMP. AFTER FIRST INJECTION POINT ON PRIMARY LOOP		
$(F_{A} \times T_{A}) + (F_{B} \times T_{B}) = (F_{C} \times T_{C})$		
$\begin{array}{l} F_{A} = \text{Primary flow rate after injection leg} \\ F_{B} = \text{Flow rate for return injection leg} \\ F_{c} = \text{Primary flow rate after return leg} \\ T_{A} = \text{Primary temp. after injection leg} \\ T_{B} = \text{Return temp. on return injection leg} \\ T_{c} = \text{Primary temp. after return leg} \end{array}$		
Example: Given the detail above, calculate the primary loop (boiler loop) temperature after the first injection location.	$(7 \times 180) + (3 \times 160) = 10x$ 1260 + 480 = 10x 1740 = 10x The primary loop temperature after the first injection location is 174°F.	

INJECTION PUMP FLOW RATES $\mathbf{F}_{v} = (\mathbf{F}_{1} \times \mathbf{T}_{p}) \div (\mathbf{T}_{1} - \mathbf{T}_{p})$ F_v = Flow rate (injection loop) in gpm F₁ = Radiant (secondary loop) flow rate in gpm T₁ = Boiler (primary loop) supply temp. T₂ = Radiant (secondary loop) supply temp. T_{R} = Radiant (secondary loop) return temp. T_D = Radiant (secondary loop) differential temp. Example: If values at design Find the injection pump flow rate. condition are: F_v = (30 x 10) ÷ (180 - 120) $F_v = (300) \div (60)$ F₁ = 30 gpm T₁ = 180°F $F_v = 5 \text{ gpm}$ T₂ = 130°F T_R = 120°F $T_{D} = 10^{\circ}F$

LOADED FOR MOTORIZED VALVE ACTUATORS (MVA)
Computed at a minimum 10% line loss
MVA draw: 0.29 amps
Amps x volts = current
0.29 x 24 = 6.96 VA per MVA
Example:
50 VA ÷ 6.96 VA = 7.18 x 0.9 = 6.5 (10%)
6 MVA per 50 VA transformer
40VAC transformer = 5 MVA
50VAC transformer = 6 MVA
75VAC transformer = 9 MVA
100VAC transformer = 12 MVA

LOADED FOR THERMAL ACTUATORS (TA)		
Computed at a minimum 10% line loss		
TA initial draw: 0.1458 amps		
Amps x volts = current		
0.1458 x 24 = 3.5 VA per TA		
Example: 50 VA ÷ 3.5 VA = 14.29 14.29 x 0.9 = 12.83 (10% reduction) 12 TAs per 50 VA transformer		
40VAC transformer = 10 TA 50VAC transformer = 12 TA 75VAC transformer = 19 TA 100VAC transformer = 25 TA	Continued on next page	

uponor

HYDRONIC FORMULAS

Continued

LOADED FOR THERMAL ACTUATORS (TA)

Computed at a minimum 10% line loss

Fuel consumption based on degree day:

F=	HL x 24 x DD
	ExPxTD

HL = Heating load (BTU/h)

24 = Hours in a day

DD = Degree day

E = Boiler efficiency (AFUE)

P = Heating value of fuel (BTU)

TD = Temperature differential

F = Annual fuel consumption

Example: A 40,000 square-foot hangar in Bangor, Maine using an 82% AFUE oil boiler (Number 2 fuel oil). The heat load for the hangar is 1,288,128 BTU/h at design. Outside design temperature is -11°F with an indoor setpoint temperature of 65°F. Number 2 fuel oil is priced at \$0.80 per gallon.

F= 1,288,128 x 24 x 8,220

0.82 x 138,000 x 76

254,121,891.840

8,662,480

F=

- F = 29,335.93 gallons of fuel oil
- F = 29,335.93 x 0.80 = \$23,469/season

FUEL COMPARISON IN BTU			
Natural Gas	100,000 BTU per 1 CCF (1 therm.)		
Propane	91,800 BTU per gallon		
No. 2 Fuel Oil	139,000 BTU per gallon		
Kerosene	134,000 BTU per gallon		
Electric	3,412 BTU per Kilowatt Hour (KWH)		
Wood	14,000,000 BTU per cord (mixed)		

SUPPLY AND RETURN PIPE SIZING (AT A 10°F Δt)			
Tubing	BTU/h	GPM	Pipe Size (in.)
Copper	10K - 20K	2-4	3/4"
	20K - 45K	4-9	1"
	30K - 80K	6-16	1 1/4"
	50K - 105K	10-21	1 ½"
	100K - 225K	20-45	2"
Multi-layer	10K - 20K	2-4	³ ⁄4"
Composite (MLC)	20K - 45K	4-8	1"
PEX (Wirsbo hePEX™ and Uponor AquaPEX®)	2.5K - 10K 5K - 15K 15K - 25K 20K - 45K 30K - 70K	0.5-2 1-3 3-5 4-9 6-14	1/2" 3/4" 1" 1 1/4" 1 1/2"
High-density	75K - 205K	15-41	2"
Polyethylene	150K - 575K	30-115	3"
(HDPE)	250K - 1,125K	50-225	4"

BOILER MAIN PIPE SIZING (AT A 20°F Δt)			
Tubing	BTU/h	GPM	Pipe Size (in.)
Copper	20K - 40K	2-4	3/"
	40K - 90K	4-9	1"
	60K - 160K	6-16	1 ¼"
	100K - 210K	10-21	1 1⁄2"
	200K - 450K	20-45	2"

